606 research outputs found

    A Comment on Technical Naturalness and the Cosmological Constant

    Get PDF
    We propose a model of dynamical relaxation of the cosmological constant. Technical naturalness of the model and the present value of the vacuum energy density imply an upper bound on the supersymmetry breaking scale and the reheating temperature at the TeV scale.Comment: 10 pages, ref. adde

    Hybrid Inflation Exit through Tunneling

    Full text link
    For hybrid inflationary potentials, we derive the tunneling rate from field configurations along the flat direction towards the waterfall regime. This process competes with the classically rolling evolution of the scalar fields and needs to be strongly subdominant for phenomenologically viable models. Tunneling may exclude models with a mass scale below 10^12 GeV, but can be suppressed by small values of the coupling constants. We find that tunneling is negligible for those models, which do not require fine tuning in order to cancel radiative corrections, in particular for GUT-scale SUSY inflation. In contrast, electroweak scale hybrid inflation is not viable, unless the inflaton-waterfall field coupling is smaller than approximately 10^-11.Comment: 17 pages, 2 figure

    Signals of Inflation in a Friendly String Landscape

    Full text link
    Following Freivogel {\it et al} we consider inflation in a predictive (or `friendly') region of the landscape of string vacua, as modeled by Arkani-Hamed, Dimopoulos and Kachru. In such a region the dimensionful coefficients of super-renormalizable operators unprotected by symmetries, such as the vacuum energy and scalar mass-squareds are freely scanned over, and the objects of study are anthropically or `environmentally' conditioned probability distributions for observables. In this context we study the statistical predictions of (inverted) hybrid inflation models, where the properties of the inflaton are probabilistically distributed. We derive the resulting distributions of observables, including the deviation from flatness 1Ω|1-\Omega|, the spectral index of scalar cosmological perturbations nsn_s (and its scale dependence dns/dlogkdn_s/d\log k), and the ratio of tensor to scalar perturbations rr. The environmental bound on the curvature implies a solution to the η\eta-problem of inflation with the predicted distribution of (1ns)(1-n_s) indicating values close to current observations. We find a relatively low probability (<3<3%) of `just-so' inflation with measurable deviations from flatness. Intermediate scales of inflation are preferred in these models.Comment: 20 pages, 11 figure

    Complex Physics in Cluster Cores: Showstopper for the Use of Clusters for Cosmology?

    Get PDF
    The influence of cool galaxy cluster cores on the X-ray luminosity--gravitational mass relation is studied with Chandra observations of 64 clusters in the HIFLUGCS sample. As preliminary results we find (i) a significant offset of cool core (CC) clusters to the high luminosity (or low mass) side compared to non-cool core (NCC) clusters, (ii) a smaller scatter of CC clusters compared to NCC clusters, (iii) a decreasing fraction of CC clusters with increasing cluster mass, (iv) a reduced scatter in the luminosity--mass relation for the entire sample if the luminosity is scaled properly with the central entropy. The implications of these results on the intrinsic scatter are discussed.Comment: 6 pages; to appear in the proceedings of the conference Heating vs. Cooling in Galaxies and Clusters of Galaxies, edited by H. Boehringer, P. Schuecker, G.W. Pratt, and A. Finoguenov. Dedicated to the memory of Peter Schuecke

    Generalized Second Law of Thermodynamics on the Event Horizon for Interacting Dark Energy

    Full text link
    Here we are trying to find the conditions for the validity of the generalized second law of thermodynamics (GSLT) assuming the first law of thermodynamics on the event horizon in both cases when the FRW universe is filled with interacting two fluid system- one in the form of cold dark matter and the other is either holographic dark energy or new age graphic dark energy. Using the recent observational data we have found that GSLT holds both in quintessence era as well as in phantom era for new age graphic model while for holographic dark energy GSLT is valid only in phantom era.Comment: 8 pages, 2 figure

    Dark Viscous Fluid coupled with Dark Matter and future singularity

    Full text link
    We study effects of viscous fluid coupled with dark matter in our universe. We consider bulk viscosity in the cosmic fluid and we suppose the existence of a coupling between fluid and dark matter, in order to reproduce a stable de Sitter universe protected against future-time singularities. More general inhomogeneous fluids are studied related to future singularities.Comment: 11 page

    A New WIMP Population in the Solar System and New Signals for Dark-Matter Detectors

    Full text link
    We describe in detail how perturbations due to the planets can cause a sub-population of WIMPs captured by scattering in surface layers of the Sun to evolve to have orbits which no longer intersect the Sun. We argue that such WIMPs, if their orbit has a semi-major axis less than 1/2 of Jupiter's, can persist in the solar system for cosmological timescales. This leads to a new, previously unanticipated WIMP population intersecting the Earth's orbit. The WIMP-nucleon cross sections required for this population to be significant are precisely those in the range predicted for SUSY dark matter, lying near the present limits obtained by direct underground dark matter searches using cyrogenic detectors. Thus, if a WIMP signal is observed in the next generation of detectors, a potentially measurable signal due to this new population must exist. This signal, lying in the keV range for Germanium detectors, would be complementary to that of galactic halo WIMPs. A comparison of event rates, anisotropies, and annual modulations would not only yield additional confirmation that any claimed signal is indeed WIMP-based, but would also allow one to gain information on the nature of the underlying dark matter model.Comment: Revtex, 37 pages including 6 figures, accepted by Phys. Rev D. (version to be published, including changes made in response to referees reports

    Topological Defects in an Open Universe

    Get PDF
    (To appear in Nuclear Physics B Supplements Proceedings section) This talk will explore the evolution of topological defects in an open universe. The rapid expansion of the universe in an open model slows defects and suppresses the generation of CBR fluctuations at large angular scale as does the altered relationship between angle and length in an open universe. Defect models, when normalized to COBE in an open universe, predict a galaxy power spectrum consistent with the galaxy power spectrum inferred from the galaxy surveys and do not require an extreme bias. Neither defect models in a flat universe nor standard inflationary models can fit either the multipole spectrum or the power spectrum inferred from galaxy surveys.Comment: 11 pages and 4 figures, Elsevier Publisher's LaTeX, POP-54

    CMB Power Spectrum from Noncommutative Spacetime

    Full text link
    Very recent CMB data of WMAP offers an opportunity to test inflation models, in particular, the running of spectral index is quite new and can be used to rule out some models. We show that an noncommutative spacetime inflation model gives a good explanation of these new results. In fitting the data, we also obtain a relationship between the noncommutative parameter (string scale) and the ending time of inflation.Comment: 8 pages, 2 figures; v2: refs. added and minor corrections; v3: further minor correctio

    Light Neutralinos and WIMP direct searches

    Get PDF
    The predictions of our previous analyses about possible low-mass (lower than 50 GeV) relic neutralinos are discussed in the light of the most recent results from WIMP direct detection experiments. It is proved that these light neutralinos are quite compatible with the new annual-modulation data of the DAMA Collaboration; our theoretical predictions are also compared with the upper bounds of the CDMS and EDELWEISS Collaborations.Comment: 4 pages, 1 figures, typeset with ReVTeX4. The paper may also be found at http://www.to.infn.it/~fornengo/papers/note.ps.gz or through http://www.to.infn.it/astropart/index.htm
    corecore